HUMAN REMAINS FROM THE MORAVIAN GRAVETTIAN: THE DOLNÍ VĚSTONICE 35 FEMORAL DIAPHYSIS

ABSTRACT: A recently identified isolated proximal femoral diaphysis from the Moravian Gravettian site of Dolní Věstonice I, Dolní Věstonice 35, is described. It is among the larger individuals known for the European earlier Upper Paleolithic, and it presents a marked gluteal buttress, a large pilaster, proximal anterior diaphyseal curvature, moderate anteverision, and variably rugose muscular markings. It is notable for its relatively low midshaft percent cortical area and moderate diaphyseal robusticity.

KEY WORDS: Human paleontology – Early modern humans – Upper Paleolithic – Europe – Postcrania

INTRODUCTION

During excavations in the 1920s and 1930s at the earlier Upper Paleolithic (Gravettian) site of Dolní Věstonice I, Karel Absolon (1945) unearthed a massive amount of macro-mammalian osteological remains, including numbers of diaphyseal sections. From among the resultant collections in the Moravské zemské muzeum, the proximal half of a hominin right femoral diaphysis has been identified. The femoral diaphysis is not itself labelled, but it was stored with a similar length of mammoth rib on which is written 'D. Věst. 1930,' and it exhibits a state of preservation similar to that mammoth specimen. Moreover, since the only archaeological and fossiliferous levels at Dolní Věstonice are Gravettian, it is very likely that the Dolní Věstonice 35 femoral diaphysis derives from these archaeological levels. This has been confirmed by direct radiometric dating of the specimen. This specimen, Dolní Věstonice 35 (DV 35), therefore represents an additional hominin individual from the extremely rich archaeological levels of Dolní Věstonice, Moravia, Czech Republic.

ARCHAEOLOGICAL CONTEXT AND DATING

The sites of Dolní Věstonice and neighbouring Pavlov have yielded one of the richest complexes of earlier Upper Paleolithic (Pavlovian – a regional variant of the earlier phases of the more widespread European Gravettian) sites, with a tremendous richness of technological, artistic, faunal and site structural remains (Absolon 1945, Klíma 1963, 1991, 1995, Svoboda 1991, 1994, Svoboda et al. 1995, 1996). These sites have also furnished six associated partial skeletons (Dolní Věstonice 3 and 13 to 16, plus Pavlov 1) and several dozen isolated human remains (Pavlov 2 to 28, Dolní Věstonice 1, 2, 4 to 12, 17, 23 to 53) (Vlček 1991, 1997, Jelínek 1992, Trinkaus et al. n.d.).

The Dolní Věstonice 1 site was systematically excavated by Absolon during the 1920s and 1930s (with the discovery of the Věstonice "Verus" in 1925) and by Klíma in the late 1940s and early 1950s (Klíma 1963), with additional excavations and geological work being carried out by these and other workers (see Svoboda et al. 1995, 1996). More recently, re-excaavation of a portion of the Dolní Věstonice
I site provided samples which yielded conventional radiocarbon dates of 29,300 ±500–600 (GrN-18187) and 27,250 ±590–570 (GrN-18188) for the lower and upper cultural horizons in the lower part of the site and 25,950 ±630–580 (GrN-18189) for the cultural horizon in the upper portion of the site (Svoboda 1991, 1995). A similar range of radiocarbon determinations have been obtained for the Dolni Věstonice II site (Svoboda 1995). The deposits yielding these dates are all at some distance from the original deposits excavated by Absolon, and therefore they provide only a reasonable range for the age of the human femoral diaphysis.

In order to position the Dolni Věstonice 35 femoral diaphysis more precisely within the Dolni Věstonice I context and to confirm its derivation from those Pavlovian deposits, the specimen was sampled along the proximal diaphyseal break (not touching the endosteal or subperiosteal surfaces) for radiocarbon AMS dating. A 360 mg sample was drilled from that location on the proximal diaphysis. Following a simple combustion to establish the approximate level of collagen preservation in the bone, a 238 mg sample was submitted to the standard Oxford pre-treatment for bone. The result was a 1.5 mg sample of carbon in the form of gas, which was measured in the Oxford Accelerator Mass Spectrometer. Measurements of carbon and nitrogen during the pre-treatment process indicated that we were not successful in removing all sources of contaminating carbon. The nitrogen value of the sample (δ15N = 12.33) is a little high indicating the presence of some contaminating material which is likely to contain some carbon. This inference of minor contamination is further supported by the relatively positive 8° C value of –18.8 per mil, which indicates some marine-based protein formation. This could either result from a proportion of marine-based diet in the DV 35 individual during life or to contamination by some extraneous marine-based material, e.g. a fish-based glue. Given the geographical origin of the specimen far from any marine contexts, it is most likely that the obtained radiocarbon age is slightly too young from twentieth century preservative contamination. Since the resulting age of 22,840 ± 200 B.P. (OxA-8292) is younger than other radiocarbon measurements for the Dolni Věstonice I site, we believe the latter explanation is most likely. Assuming that this is the case, the OxA-8292 determination ca 23,000 B.P. should be taken as a minimum age for the DV 35 femoral diaphysis but sufficient to confirm its derivation from the Dolni Věstonice I levels excavated by Absolon in 1930.

THE DOLNI VĚSTONICE 35 FEMORAL DIAPHYSIS – PRESERVATION

The Dolni Věstonice 35 femur retains the proximal diaphysis from the cranial end of the gluteal buttress to approximately midshaft (Figure 1). The gluteal tuberosity is largely preserved, lacking its most cranial extent, and there is a suggestion of a postero-medial flare for the base of the lesser trochanter and the distal end of the spiral line extending superomedial from the proximal end of the linea aspera. The distal break is on a slight demarcation from proximodistal to distoposterior along ca 46 mm of the diaphysis. Maximum preserved length = 246 mm.

The subperiosteal surface bone is well preserved. There is minor root etching, and there is some thin surface spalling along ca 84 mm long and to 13 mm wide of the anterolateral diaphysis. The bone loss, however, is in a region of no usual muscle markings and was sufficiently thin to have little effect on observed subperiosteal bone contours.

The proximal break of the shaft piece has a large wedge missing from the mid-posterior surface medial of the gluteal tuberosity, lacks bone chips from the anterior surface, and has irregular and rounded breaks to the external surface of the bone extending up to 6.5 mm long from the most proximal point on the piece. Distally, in addition to the oblique break of the metatarsals, there is a small section missing anteriorly. The missing anterior contour, however, can be easily interpolated from the neighbouring subperiosteal and endosteal bone surfaces.

THE DOLNI VĚSTONICE 35 FEMORAL DIAPHYSIS – MORPHOLOGY

Materials and methods

Given its association with a European earlier Upper Paleolithic (EUP) technological complex, the DV 35 femur is compared morphometrically to the femora of other European EUP (20,000 years B.P.) hominids. Of primary interest are those from Dolni Věstonice and neighbouring Pavlov (Jelínek 1954, Vlček 1991, 1997, Vanda 1992, Trinkaus, Jelínek 1997, Trinkaus 1997) and the central European Gravettian sites of Brno, Předmosti and Willendorf (Woldrich 1893, Matiežka 1938, Jelínek 1959).

Additional data are included for the western European Gravettian remains from Arene Candide, Barma Grande, Caviglione, Grotte des Enfants, Paglicci, Parabita, and Paviland (comparative data from Vorneau 1906, Cremonesi et al. 1972, Malleggi, Parenti 1973, Sergi et al. 1974, Formicola 1990, Hoff 1999, Trinkaus n.d., pers. mea.), as well as from the earlier Aurignacian human remains from Cro-Magnon, Mladě and La Rocheotte (data from Klaatsch, Lustig 1914, Szombathy 1925, Holliday 1995, Trinkaus pers. mea.). In this comparative sample, DV 3, Grotte des Enfants 5, Parabita 2, Předmosti 4, 9, 10, La Rocheotte 1 and Willendorf 1 are probably female, Arene Candide II, Barma Grande 2, Brno 2, Caviglione 1, Cro-Magnon 1, DV 13, 14, 16, Grotte des Enfants 4, Paglicci 25, Parabita 1, Paviland 1, Pavlov 1 and Předmosti 3, 14 are probably male, and the remainder cannot be reliably assigned gender.

Morphometric comparisons of the DV 35 femur consist of external metrics and cross-sectional geometry. Even though cross-sectional geometric measures (areas and second moments of area) provide more accurate measures of the quantity and distribution of diaphyseal bone and are more amenable to appropriate scaling relative to body mass and limb length (Ruff et al. 1993), they are available for only some of the European earlier Upper Palaeolithic humans (Trinkaus 1997, n.d., pers. mea., Holt 1999). Consequently, comparisons are also included for external osteometrics, thereby permitting comparisons to a larger sample of individuals (see Table 1).

It has been possible to reconstruct diaphyseal cross sections of the DV 35 femur at approximately the midshaft (50% of biomechanical length) and the subtrochanteric (80% of biomechanical length) levels. The 80% position was placed below the distal swelling for the lesser trochanter at the maximum development of the lateral gluteal buttress. The 50% position was determined to be close to the most distal level at which a virtually complete subperiosteal contour is preserved (requiring only trivial completion of the anterior contour). This is a level at which the shaft appears to be maximally developed. It is also just distal of the level at which the postero-lateral surface goes from distinctly concave to flat to minimally convex anterolateral to posterior, a proximodistal diaphyseal morphological shift which frequently occurs near midshaft in femora with prominent pilasters.

The cross sections were reconstructed by transcribing the oriented subperiosteal contours using silicone putty contour molds (Cuttersil Putty-Plus, Heraeus Kulzer Inc.). The anterior, posterior, medial and lateral cortical thicknesses were measured on the original specimen with sliding calipers along the fossilization breaks, using the measurement of the plaster to define posterior at midshaft and the maximum development of the gluteal buttress to locate “lateral” at the 80% section. These cortical thicknesses were then used to place limits on the endosteal contours, which was interpolated using the subperiosteal morphology as a guide. The resultant cross sections were oriented using the position of the linea aspera, such that...
the proximal neck on the diaphyseal axis (Ruff, Hayes 1983), the specimen would have a biomechanical length of 473 mm. Although this length is employed in the comparisons below, it is realized that small errors in the proximodistal locations of these sections would alter the perceived biomechanical length; plus 5 mm would provide a biomechanical length of 490 mm, and minus 5 mm would provide one of 457 mm. The biomechanical length from the section positions provides an estimated femoral bicondylar length (M-2 Bräuer 1988) of ca 498 mm (based on a least squares regression of Late Pleistocene Homo (femur: FemBicLen = 1.025 × FemBiomLen + 13.21, r^2 = 0.976, df = 20) (these would be 515 mm and 482 mm for plus and minus 5 mm on the section locations). The bicondylar length estimation of 498 mm for the DV 35 femur places it just over one standard deviation above the European EUP mean of 462.7 ± 33.4 mm (Table 1). However, the fifteen EUP males provide a mean length of 478.4 ± 28.2 mm, and five of them (Barma Grande 2, Cro-Magnon 1 and 4322, DV 14, and Grotte des Enfants 4) have femur lengths greater than 490 mm. Three of these EUP males in fact have femur lengths greater than 500 mm and two of them exceed the higher reasonable estimate of 515 mm for DV 35. Consequently, even though DV 35 is clearly among the longer of the known European EUP femora, it is not exceptional for these generally tall early modern humans.

In contrast, external osteometric measures of overall diaphyseal size (Table 1) place DV 35 close to the means for the European EUP sample. Moreover, both of its cortical areas are below the mean EUP values. Since cortical area in part reflects axial loading from body mass, the low cortical areas are unusual given both its midshaft external measurements and estimates of bone length.

External morphology

The DV 35 femur is notable for its combination of a marked and distinct proximodistal gluteal buttress and its prominent pilaster with a wide and rugged linea aspera, especially near midshaft.

The anterior diaphyseal surface is a gently mediolaterally rounded surface for most of its preserved length with no distinct muscle markings. It is notable mainly for its clear anterior convexity. It is not possible to determine a standard (Bräuer 1988) curvature index given the absence of the distal half of the diaphysis. However, if a chord is measured on the preserved proximal ca 175 mm of anterior shaft contour extending distally from the slight concavity where the anterior greater trochanter blends onto the diaphysis, there is a maximum subme of 7 mm located 80 mm distal of the proximal end of the chord.

The medialis diaphyseal surface exhibits an anteriorly rounded surface which becomes flat along its posterior portion as the pilaster develops distal of the gluteal tuberosity. Toward midshaft, however, the posterosmedial surface is slightly concave, largely as a result of a medial projection of the linea aspera and the immediately adjacent dorsal pilaster. There is a minimal swelling for a medial buttress (see Trinkaus 1976) along the proximal ca 90 mm of the diaphysis, which is more palpable than visible.

Laterally, the bone is dominated proximally by a prominent gluteal buttress (Figure 2). It begins proximally cranial to the fossilization break, is slightly convex in anteroposterior profile for 30 to 35 mm, then curves medially strongly to blend in with the posterosmedial diaphysis at the level of the proximal linea aspera. Its total preserved length is 88 mm, and it probably originally extended proximally to a length of ca 95 mm.

In lateral view the gluteal buttress is slightly convex anteriorly, and it gives the impression of curving posteriorly at its distal end. However, given the indication of a strong anterior femoral curvature on the specimen, it is likely that its orientation was close to the coronal plane of the

TABLE 1. Dimensions of the Dolni Vistocine 35 femur and summary statistics for the European earlier Upper Paleolithic comparative sample.

<table>
<thead>
<tr>
<th></th>
<th>DV 35</th>
<th>EUP (Mean ± SD [N])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bicondylar length (M-2) (mm)</td>
<td>462.7 ± 33.6 (24)</td>
<td>((498))</td>
</tr>
<tr>
<td>Biomechanical length (mm)</td>
<td>442.4 ± 31.1 (18)</td>
<td>((473))</td>
</tr>
<tr>
<td>Proximal AP diameter (mm)</td>
<td>24.3</td>
<td>25.0 ± 2.9 (22)</td>
</tr>
<tr>
<td>Proximal ML diameter (mm)</td>
<td>35.0</td>
<td>34.8 ± 3.2 (22)</td>
</tr>
<tr>
<td>Midshaft AP diameter (M-6) (mm)</td>
<td>34.9</td>
<td>31.0 ± 4.0 (22)</td>
</tr>
<tr>
<td>Midshaft ML diameter (M-6) (mm)</td>
<td>27.6</td>
<td>27.1 ± 3.4 (22)</td>
</tr>
<tr>
<td>Gluteal tuberosity breadth (mm)</td>
<td>9.0</td>
<td>9.9 ± 2.2 (13)</td>
</tr>
<tr>
<td>50% Total area (TA) (mm^2)</td>
<td>588.4</td>
<td>599.3 ± 98.8 (18)</td>
</tr>
<tr>
<td>50% Cortical area (CA) (mm^2)</td>
<td>383.4</td>
<td>457.4 ± 93.3 (18)</td>
</tr>
<tr>
<td>50% AP second moment (I_{AP}) (mm^4)</td>
<td>33208</td>
<td>34937 ± 13691 (18)</td>
</tr>
<tr>
<td>50% ML second moment (I_{ML}) (mm^4)</td>
<td>20320</td>
<td>23363 ± 7549 (18)</td>
</tr>
<tr>
<td>50% Max. 2nd moment (I_{max}) (mm^4)</td>
<td>35131</td>
<td>35488 ± 13570 (18)</td>
</tr>
<tr>
<td>50% Min. 2nd moment (I_{min}) (mm^4)</td>
<td>18397</td>
<td>22841 ± 7470 (18)</td>
</tr>
<tr>
<td>50% Polar moment (J) (mm^4)</td>
<td>53528</td>
<td>58329 ± 20887 (18)</td>
</tr>
<tr>
<td>80% Total area (TA) (mm^2)</td>
<td>585.1</td>
<td>678.1 ± 106.4 (17)</td>
</tr>
<tr>
<td>80% Cortical area (CA) (mm^2)</td>
<td>473.1</td>
<td>503.7 ± 98.8 (17)</td>
</tr>
<tr>
<td>80% AP second moment (I_{AP}) (mm^4)</td>
<td>23306</td>
<td>30955 ± 11824 (17)</td>
</tr>
<tr>
<td>80% ML second moment (I_{ML}) (mm^4)</td>
<td>33261</td>
<td>43319 ± 12947 (17)</td>
</tr>
<tr>
<td>80% Max. 2nd moment (I_{max}) (mm^4)</td>
<td>37566</td>
<td>49126 ± 16999 (17)</td>
</tr>
<tr>
<td>80% Min. 2nd moment (I_{min}) (mm^4)</td>
<td>19001</td>
<td>25115 ± 8385 (17)</td>
</tr>
<tr>
<td>80% Polar moment (J) (mm^4)</td>
<td>296</td>
<td>74281 ± 20335 (17)</td>
</tr>
<tr>
<td>80% Theta</td>
<td>29°</td>
<td>26.7 ± 12.1° (17)</td>
</tr>
</tbody>
</table>

Notes to Table 1:

1. Distance parallel to the mid-diaphyseal axis from the intersection of this axis with the proximal neck (usually just medial) of the greater trochanter to the average of the distal condylar surfaces (Ruff, Hayes 1983).

2. Diaphyseal diameters of the diaphysis taken at the level of the maximum development of the posterosmedial gluteal buttress, with the mediolateral (ML) diameter being the maximum posterosmedial and anteroposterior (AP) diameter taken perpendicular to the ML one at the same level.

3. Maximum mediolateral (or posterosmedial to anterolateral) breadth of the rough area of the middle of the gluteal tuberosity (Trinkaus 1976).
The linea aspera extending distally from the gluteal tuberosity is rounded and smooth, ca 6 mm wide. It then gradually becomes increasingly wider, largely as a result of the enlargement of its medial side. At the distal break, near midshaft, it is up to 13.5 mm wide.

In addition, the primary axis of the proximal femur is strongly foetated anteromedial to posterolateral relative to the sagittal plane defined by the position of the pilaster and linea aspera at midshaft. Theta, or the orientation of ϕ_{max} relative to the coronal plane, is 29° for the 80% section. This value is similar to the mean of the variable EUP sample, most of whom have values for this angle between 20° and 40°. All are indicative of anteverision of the femoral head and neck (Ruff 1981).

MORPHOMETRIC COMPARISONS

Diaphyseal shape

These morphological patterns are reflected in comparisons of diaphyseal subtrochanteric and midshaft proportions. Data plots of the subtrochanteric external diameters and maximum versus minimum second moments of area (Figure 4) position DV 35 in the middle of the earlier Upper Paleolithic distribution, most of whom are relatively platymeric (Trinkaus 1976). The prominent gluteal buttress of DV 35, although large, is matched by those of other Neanderthal femora (e.g., DV 14), and the overall distribution of bone in the subtrochanteric area is not unusual for these early modern humans. At the same time, the midshaft distributions (Figure 5) place DV 35 toward the upper (more
CONCLUSION

The Dolni Věstonice 35 femoral diaphysis therefore increases our sample of hominid femoral remains from the central European Gravettian, being notable for its pronounced and morphologically distinct gluteal buttress, its pronounced pilaster, its thin cortical bone near midshaft, and its moderately gracile femoral diaphysis. In other features, it is close in morphology to the other known femora of large European earlier Upper Paleolithic individuals.

ACKNOWLEDGMENTS

The analysis of the Dolni Věstonice 35 femur was possible through the permission of Dr. Petr Šefl, Director of the Moravian regional museum, and Dr. Martin Oliva, Director of the Anthropos Institute, Moravian regional museum, Brno. In addition, Y. Coppens, W. J. Kennedy, A. Langanye, H. de Lumley, M. Sakkas, J. Svoboda and M. Tcheshler-Nicola permitted the analysis of human remains in their care, and B. Holt provided cross-sectional data for several of the earlier Upper Paleolithic femora. The travel expenses of ET were covered by NSF (BRS-9318702) and the University of New Mexico, comparative data collection has been funded by the L.S.B. Leakey Fdn. Wenner-grant ICRG-14, the C.N.R.S., the University of New Mexico, and Washington University, and the radiocarbon dating of the specimen was supervised by Wenner-grant ICRG-14, the L.S.B. Leakey Fdn, and the Prehistoric Society. To all of these individuals and institutions we are grateful.

REFERENCES

KLIMÁ K., 1985: Dolni Věstonice II: Ein Materjuktinner-ort und seine Bestattungen. Études et recherches archéologiques de l’Université de Liège 73, 1-188.

Erik Trinkaus
Department of Anthropology
Campus Box 1114
Washington University
St. Louis MO 63130, USA
E-mail: trinkaus@arts.wustl.edu

Jan Jelinek
Ústav Anthropologie
Moravske zemské muzeum
Zeliv 67
659 37 Brno
Czech Republic
E-mail: anthrov@mzmn.anet.cz

Paul B. Pettit
Radiocarbon Accelerator Unit
Research Laboratory for Archaeology and the History of Art
University of Oxford, 6 Keble Road
Oxford OX1 3QZ, England
E-mail: paul.pettit@archaeology-research.oxford.ox.ac.uk