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WHAT TO DO WITH LONG BONES: _
TOWARD A PROGRESSIVE PALAEOAUXOLOGY

ABSTRACT: There has been renewed interest in the study of growth of development of past populations by physical
anthropologists over the past decade. A variety of approaches have been used in an attempt to bring some sense of
statistical rigour to the use of linear growth as a proxy for health and well-being within a population. This paper
presents an overview of these techniques, and then discusses alternative approaches for the analysis of skeletal growth
data. Simply put, any observed distribution of anthropometric data can be thought of being composed of several underlying
sub-distributions, which cannot be readily differentiated but may be of intrinsic interest to the skeletal biologist. Various
techniques, including finite mixture analysis, can be used to estimate the contribution or proportion of those unobserved
sub-distributions, and provide a potentially powerful, but as yet under-exploited avenue of investigations for future

studies in palaeoauxology.
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INTRODUCTION

Since growth is the process by which variation occurs, it
is not surprising to find a long history of growth-related
studies in physical anthropology. Physical anthropologists
are interested in understanding the variation in patterns of
human growth and development to better understand
observed morphological differences within and between
populations. Such studies have examined human
developmental patterns within wide spatial and temporal
ranges. The basic assumption of palacoauxological studies
is that childhood growth reflects health and nutritional
status better than any other index, a notion supported in
the anthropometric literature which observes higher rates
of morbidity and subsequent mortality associated with
varying degrees of stunting and wasting in children.
Recognising that the subadult cohort contained a wealth
of potential information on the evolution of human
ontogeny, researchers were quick to apply techniques
borrowed from anthropometric studies to both prehistoric

and palaeoanthropological samples. Given the abundance
of remains from archaeological populations relative to
those of earlier hominids, it is not surprising to find that a
large body of bioarchaeological studies have accumulated
in the literature. Like anthropometric studies of living
populations, studies of skeletal growth from archaeological
collections make interpretations regarding the overall
health and well-being of a population from the apparent
growth of children. Since long bone growth is differentially
affected by the nutritional and health status of the
individual, osteologists have utilised cross-sectional
analyses of long bone growth as a non-specific indicator
of nutritional status, with observed differences between
samples used as evidence for differential health status
between entire populations, either geographically or
temporally. It must be noted though, that growth-related
measurements remain non-specific indicators of health, and
are sensitive to many factors.

While there is a wealth of information on skeletal growth
and development, physical anthropologists, for the most
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part, have been relatively selective in the kinds of data that
have been explored for past populations. Many studies,
particularly bioarchaeological studies, have been primarily
descriptive in nature, with theoretical and methodological
issues forming a secondary role in the literature (Hoppa,
Fitzgerald 1999). As a result, there has been a relative
paucity of hypothesis testing in palaeoauxological studies.

AN INTERPRETATIVE FRAMEWORK

Assessments of growth in length of the long bones are the
most commonly employed assessment of growth in
bioarchaeological analyses (e.g. Johnston 1962, Walker
1969, Merchant, Ubelaker 1977, Stloukal, Handkova 1978,
Molleson 1990, Lovejoy et al. 1990, Wall 1991, Hoppa
1992, Saunders et al. 1993, Miles, Bulman 1994, 1995,
Ribot, Roberts 1996, Henneberg, Stenyk 1996). Less
frequently but of equal interest, studies of appositional
growth are made (e.g. Armelagos et al. 1972, Huss-
Ashmore et al. 1982, Mays 1985, 1995, 1999, Saunders,
Melbye 1990, VanGerven et al. 1985). Bioarchaeological
studies need not restrict themselves, however, to traditional
assessments of linear growth, and a handful of studies have
undertaken more innovative approaches to
palacoauxological inquiry (Boldsen 1998, Clark 1988,
Clark et al. 1986, Grimm 1990, Humphrey 1998, Porter,
Pavitt 1987). Incorporating assessments of stress indicators
in studies of growth provides further support for
interpretation of health and well-being among past
populations (e.g. Hiihne-Osterloh 1989, Mays 1995, Nowak
1996, Ribot, Roberts 1996).

Regardless of the specific focus, all studies of this nature
necessarily adopt some interpretative framework to
compare growth and age in the skeleton and the
distributions of growth-related measures are examined in
the context of some independent estimator of age — usually
dental development. By doing so, a cross-sectional "growth
curve® or skeletal growth profile (SGP) can then be
constructed in order to examine the age-progressive trend
in growth (Figure 1). The major limitation of cross sectional
data is of course that it does not allow one to observe
individual variability in the rate of growth or in the timing
of the adolescent growth spurt (Tanner 1978). Individual
variation in the timing of the adolescent growth spurt can
be quite substantial, but when this data is represented by
the average of many individuals all starting at different
exact ages, the curve becomes spread out and its peak
lowered. However, in comparative surveys of growth
between two or more populations, there is often more
concern with the means and variations of the group rather
than the patterns unique to the individual (Eveleth, Tanner
1976). Nevertheless, researchers have attempted to examine
the rate of growth by examining simple percentage
increases in size by age (e.g. Hoppa 1992, Armelagos et al.
1972) or by taking the first derivative of a polynomial
function fitted to the growth data (e.g. Lovejoy et al. 1990).
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FIGURE 1. Skeletal growth profile (SGP) plotting diaphyseal length of
femur against dental age. A) standard SGP, B) SGP illustrating the
curvilinear nature of the data when very young individuals are included.

Another issue to be considered is the fact that almost all
growth-related events have a positively skewed distribution
relative to the mode, given that there are going to be more

late than early maturers (Angel 1984, Angel et al. 1986). |

Because of this bias, Angel (1984) recommends avoiding
means and using the actual distributions and modes of the
data.

Once within such a framework, growth-related data can
be explored visually, and possibly, by more rigorous
quantitative techniques. However, the extent to which such
techniques can provide meaningful interpretations depends
greatly on the sample size and quality of the skeletal data
being analysed. In the following section, some common
forms of statistical analysis performed in growth-related
studies are reviewed. In addition, alternative approaches
are presented and their potential for palaeoauxological
studies explored.

What to Do with Long Bones: Toward a Progressive Palaeoauxology

STATISTICAL ANALYSES OF GROWTH
IN SKELETAL SAMPLES

As others have noted, the nature of the data used to
construct SGPs often prevents adequate statistical
comparison between population samples. Some have
further argued that more powerful techniques are likely to
reveal little more than is observable from simple
examination of the graphs (Merchant 1973). In fact,
Konigsberg and Holman (1999) have suggested that many
previously published observations of significant differences
in SGPs between archaeological samples probably are not
actually significant, but rather the result of poor sample
sizes and variability in dental age estimations. The latter
pointin particular, is seen as an often-ignored but important
issue (Hoppa 1992, Lampl, Johnson 1997). Nevertheless,
a variety of studies have made use of various statistical
approaches for making interpretations regarding health and
well-being in the past. Often in fact, there is more emphasis
on attempting to describe the data and less emphasis on
trying to understand the mechanisms responsible for or
most likely to have produced the data. Freedman (1985)
once criticised ‘social scientists’ for applying mathematical
models to describe data rather than applying models to
examine the behaviour of the process being investigated.
Often the purpose is to "fit a curve to the data, rather than
figuring out the process which generated the data"
(Freedman 1985:348). Palacoauxological studies must, in
particular, be cautious of not falling into this trap.
Somatic growth during infancy follows a simple
curvilinear path for which regression models can be applied
(Bogin 1988, Johnston 1978). Deviations from the general
path are often associated with malnutrition or disease, and
children whose growth is abnormally affected by such
factors tend to be easily identified. During the years of
early childhood (14 years of age) somatic growth becomes
standardised in its rate, achieving a steady, near-linear
increase until the adolescent growth spurt (Maresh 1955,
Johnston 1978). As a result, many studies of linear growth
in skeletal samples have made use of regression analysis
to aid interpretation of growth-related changes. In doing
so, long bone size is the dependent variable and (often)
dental age the independent variable. Simple linear
regression can then be fit to the distribution, although the
inclusion of very young individuals often requires a
curvilinear fit (Figure 1b). Correlations are, not
unexpectedly, very high. As with any statistical procedure,
there are a number of assumptions built into ordinary least
squares regression analysis that should be addressed. Since
most of these assumptions focus on error (omitted
variables, a non-linear relationship, non-constant error
variance, correlation among errors, non-normal errors or
influential cases), residual analysis is one way of assessing
these problems. Normal-probability plots of residuals and
scatter plots of predicted values versus residuals aid in
assessing the validity of these assumptions (Hamilton
1992). Multicollinearity among independent variables may

also be a problem and while most models are univariate,
multivariate models will have some degree of correlation
between independent variables, given that they are all a
function of skeletal growth. The result being that the
standard error of the estimated coefficients will be greater
in multivariate than univariate models.

It can also be tempting to fit more complicated models
although one must be cautious of such attempts, as very
complicated models, relative to fairly simple data, serve
to reduce the overall adjusted correlation. However, as with
studies of modern growth data, there is still no clear
consensus on the models to be fitted to skeletal growth
data. Miles and Bulman (1994, 1995), recognising the
problems with fitting complex curves to data, opted to fit a
Sth order polynomial to their raw data, although a log-
normal equation was used when comparing their results to
other published summary data. Recently Humphrey (1998)
has shown that the Gompertz equation provides a reliable
description of human skeletal growth and that a modified
Gompertz equation, in which the lower asymptote is forced
to be zero, is less severely perturbed than the standard
Gompertz equation by the removal of young individuals
from the sample.

Another issue that has come to light for physical
anthropology is the statistical validity of using ordinary
least squares regression analysis for age-related data. While
criticisms have been levied primarily at regression
estimates for adult age (Akyroyd et al. 1999, Konigsberg
etal. 1997) some discussion has focused on growth-related
variables in skeletal samples. The greatest application of
course, has been in the estimation of foetal or perinatal
individuals (e.g. Fazekas, K6sa 1978, Olivier, Pineau 1960).
Notwithstanding the problem of applying radiographic
observations to osteological samples (Huxley 1998), much
criticism has centred on the use of regression equations
for age estimation in perinatal remains (e.g. Scheuer et al.
1980, Sellier, Tillier 1997, Konigsberg et al. 1997). For
example, Fazekas and Késa (1978) undertook extensive
measurements on a sample of 138 foetuses of variable age
and produced regression equations to predict overall body
length from the size of a single bone. This in turn could be
translated into a foetal age in lunar months from conception.
However, their "material was not grouped according to the
period of pregnancy, but on the basis of body length"
(1978:31). While a well known correlation exists between
foetal age and body length, the use of their regressions is
circular given that long bone length is highly correlated
with stature. Scheuer ez al. (1980) developed regression
equations to directly determine foetal age from the size of
most of the long bones. Application of both techniques to
archaeological and forensic specimens of different
populations have produced less accurate results (Huxley,
Jimenez 1996, Ubelaker 1987). However, Scheuer and co-
workers state that while regression equations may not be
universally applicable "one should not be deterred from at
least trying to estimate the age of babies so frequently found
in archaeological sites" (1980:263). The danger in this of
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course, is the potential for widely differing interpretations,
as Konigsberg and colleagues have noted in a re-analysis
of Owsley and Jantz’s (1985) large Arikara perinatal
sample. The original analysis used Scheuer et al.’s (1980)
regression equations of known age on foetal length, to
estimate gestational age for almost 500 perinatal
individuals, and observed a large proportion of pre-term
or small-for-age individuals. Konigsberg and colleagues
(1994, 1997) using a different set of regression equations
for length of age, and a maximum likelihood estimation
technique, observed the bulk of the individuals falling at
the 40 week or term period. The results are radically
differing interpretations of population dynamics and
perinatal mortality and health.

Another analytical technique that is commonly used to
assess patterns of skeletal growth is ontogenetic allometry.
More commonly used in palaeoanthropological studies
(e.g. Dainton, Macho 1999, Hartwig-Scherer, Martin 1992,
Jungers, German 1981, Shea 1992, 1995), this approach
has seen only limited use in bioarchaeological analyses
(e.g. Jungers et al. 1988, see also Buschang 1982). In
general, an SGP is constructed for two growth-related
variables and the allometric power equation is fitted to the
data (Albrecht et al. 1993). Because its strength is the
ability to examine inter-specific growth, it has been
exploited little in bioarchaeological studies, despite most
analyses recognising the problems of population specific
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adult size. Traditionally this problem has been addressed
by constructing growth profiles as a percentage of mean
adult long bone length or mean adult stature for individual
populations (Goode et al. 1993, Hoppa 1992, Lovejoy et al.
1990, Saunders et al. 1993b, Wall 1991). Utilising mean
adult long bone lengths has been recommended as this will
take into account variation in limb proportions and
differences in the regression equations utilised to
reconstruct mean stature (Sciulli 1994, Hoppa, Saunders
1994). However, as Albrecht and colleagues (1993) have
noted, the use of a simple ratio to control for population
differences does not eliminate size correlations.

TOWARD A PROGRESSIVE
PALAEOAUXOLOGY

If palaeoauxology is to really develop as a sub-discipline,
then like palaeopathological studies a decade ago, it needs
to move beyond the level of descriptive case studies.
Despite reservations by some that more quantitative
analyses are neither warranted nor possible, there are some
potentially useful venues that are worth exploring before
declaring growth studies non-statistical. One area which
has considerable potential for exploitation is that of finite
mixture analyses.
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FIGURE 2. Distributions of height for age composed of various subsamples of: A) multiple age groups, B) healthy and non-healthy individuals,

C) males and females, D) survivors and non-survivors.
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The application of mixture analysis methods for
analysing skeletal data is not new to physical anthropology.
However, its application has found only limited exposure
in the anthropological literature, dealing with
discrimination of sex (Godfrey et al. 1993, Martin 1936,
Plavcan 1994, see also Dong 1997) or taxa (Kramer,
Konigsberg 1999, see also Pearson et al. 1992), and
estimating age profiles (Hoppa et al. 1999). Simply put,
mixture analysis techniques are statistical procedures that
attempt to estimate the underlying subsamples that make
up an observed distribution. For example, the observed
distribution of children’s heights is made up of a series of
sub-distributions of height for various ages (Figure 2a).
Similarly, the observed distribution of heights (or some
other anthropometric measure) for a specific age group,
can be thought of as being composed of sub-distributions
of males and females (Figure 2b), healthy versus not-
healthy individuals (Figure 2c¢) or survivors versus non-
survivors (Figure 2d). In all these examples, it is the overall
distribution that is observed, but it is the underlying
distributions or their proportions that wish to be estimated.

Subadult age structure

Recently brought to the attention of physical
anthropologists by Konigsberg and Frankenberg (1992,
1994) the age-length key method is a statistical technique
designed to estimate age from size data. Originally
developed for use in the fisheries industry (e.g. Kimura
1977, Kimura, Chikuni 1987, Macdonald, Pitcher 1979)
this technique and alternative approaches clearly may be
of interest to skeletal biologists interested in analogous
information from diaphyseal length data. Traditionally,
patterns of diaphyseal growth are recognised to be the least
effective estimates of chronological age because of their
sensitivity to population and health differences (Hoppa
1992, Ubelaker 1987). It is precisely for the latter reason
in fact, that so many studies have attempted to describe
diaphyseal length with respect to other independent age
estimators. However, there has been much renewed
discussion recently over the problems associated with
extrinsic references standards on which these independent
age estimations are based — that being the practice of
applying modern dental developmental standards to pre-
modern populations (Lampl, Johnston 1996).
Coincidentally, there has been a movement toward the use
of dental micostructure data on which to determine intrinsic
rates of development, which would allow estimation of
age while avoiding issues of inappropriate standards (Dean
1987, FitzGerald 1998, Shellis 1998) However, such
techniques still remain time and labour demanding and as
such, have seen only limited application on large
archaeological samples (Antoine et al. 1999, FitzGerald
et al. 1999, Huda, Bowman 1995, Reid et al. 1998). One
possible solution is to employ a training sample based on
a small random selection of individuals for whom dental
microstructure estimates have been performed and use this
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FIGURE 3. A) Distribution of heights for 6 to 10-year-old children.
B) the estimated sub-distributions by age, using fitted mixture analysis.

information to estimate the overall age structure of the
sample. For example, Figure 3a displays the frequency
distribution of heights for a group of children. We know
that the distribution is reflective of children aged 6 to 10
years, but do not know the precise proportion of individuals
within each group. Using a small training sample of known-
age individuals for this sample, we can use a fitted mixture
distribution technique to estimate the underlying sub-
samples of height for each of the 5 groups (Figure 3b).

Sex-specific patterns of growth

To the grief of many researchers, determination of sex from
the skeleton has been restricted to those who have survived
adolescence to manifest changes in the skeleton reflective
of sex. Despite a variety of studies investigating sexually
dimorphic traits in non-adults (e.g. Hunt 1990, Majo et al.
1993, Mittler, Sheridan 1992, Molleson et al. 1998, Rosing
1983, Schutkowski 1986, 1987, 1989, 1993, Weaver 1980)
only a few have had sufficient levels of accuracy to warrant
their application in osteological analyses. Showing great
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FIGURE 4. A) Distribution of heights for 6 to 10-year-old children.
B) the estimated sub-distributions by sex, using fitted mixture analysis.

potential but still restricted by cost and time, is the
possibility of determining sex by extracting ancient DNA
from the bones or teeth of individuals (e.g. Faerman et al.
1995, Fattorini et al. 1989, Lassen 1997, Ovchinnikov et al.
1998, Stone et al. 1996). Somewhat more promising has
been the discrimination of sex in non-adults from dental
metrics (e.g. Alt et al. 1998, Black 1978, DeVito, Saunders
1990, Liversidge, Molleson 1999, Introna et al. 1993,
Teschler-Nicola 1992). In particular, the use of metrics from
the permanent dentition can be tested on a sample by
sample basis, since some proportion of the subadult
component will have at least a permanent M1 present. As
a result, population-specific models can be developed and
the use of discriminant function analysis or logistic
regression techniques can use the adult segment (which
can be accurately sexed) as a ‘known sex’ training sample
on which to refine the model for the non-adults. This of
course assumes that there is no mortality bias in the size
of the teeth for non-survivors (i.e. subadults) as discussed
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below (although see also Guagliardo 1982, Perzigian 1975).
This is illustrated in Figure 4 which shows an overall
distribution of height in children (Figure 4a) and the
estimated sub-distributions of height for males and females
(Figure 4b) based on a small training sample of known sex
for height individuals.

Healthy versus not healthy — testing

the Osteological Paradox

An issue that has had considerable attention for
palaeoauxology is the fact that the subadult cohort
associated with a burial sample are essentially non-
survivors (Johnson 1968). That is, they represent
individuals who for whatever reason have failed to survive
the developmental phase to complete maturation and whose
level or pattern of growth and development, therefore,
might not reflect the true pattern of growth in the
population. Long recognised as a theoretical obstacle by
researchers, this issue re-emerged with the publication of
the Osteological Paradox in which Wood and colleagues
(1992) argued that skeletal samples are intrinsically biased
because they are the products of selective mortality or non-
random entry. Selective mortality relates to the fact that
archaeological samples do not represent all susceptible
individuals within a particular age cohort, but rather, only
those individuals who have died at that age. If mortality in
the age groups has differential links to reduced or abnormal
growth, then there may be selection bias with growth
observed in mortality samples under-estimating the normal
pattern of growth which survivors underwent. The latter
of course is unobservable by skeletal biologists, since
survivors enter the adult segment of the skeletal sample
after the growth process has ceased. However, from a
review of the child survival literature with respect to
growth, Saunders and Hoppa (1993) concluded that while
there did appear to be statistically significant differences
between the growth of survivors and non-survivors, the
magnitude of this difference for cross sectional studies of
long bone growth would be minimal, and likely less
important than the error introduced by methodological
issues like ageing standards.

Nevertheless, an observed sample of growth-related data
may still be reflective of a non-homogeneous group of
individuals, some of whom may exhibit a different pattern
of growth because of differing susceptibility or frailty. If
supplementary information can be collected then statistical
procedures might allow one to explore in more depth this
hidden heterogeneity. Brought to the attention of skeletal
biologists by Wood and colleagues (1992) the idea of
hidden heterogeneity refers to the problem of unobserved
variability in the relationship between dependent and
independent variables. While this concept has been applied
most often to the analysis of life-event history data, usually
with respect to survivorship, it is clearly of relevance to
interpretative analyses of differential growth.

If one has a subsample of individuals for which
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Wh
alaeopathological information can be derived
Fndependently, such data can be used to estimate the

proportion and distribution of each group. One can imagine,
for example, a large sample of subadult lo_ng bone lengths
for which a small sample of those individuals had been
analysed for enamel hypoplasias and scored_ as present or
not present. While this sample is smaller, it can still be
used to create a matrix of bone length distributions apd
frequency of healthy versus non-healthy individuals. Us_mg
this information, one may be able to discern two distinct
patterns of growth — one for healthy individuals, and one
for non-healthy individuals. Of course, given the notion
that the healthy are those who manifest chronic indicators
of stress, and the frail are those that do not, the pattern
might be opposite to that anticipated (Ortner 1991, Wood
et al. 1992).

If palacopathological data can be adequately assessed,
the simple categorical relationships can be designed to
group individuals into healthy versus not healthy (i.e. those
within the subadult cohort without and with stress
indicators present) and univariate logistic or multinomial
logistic regression models estimated to predict membership
is the observed group. How well the model is able to predict
membership will reflect a relationship between the non-
specific indicators of health, and the growth-related
variables. Boldsen (1998) for example tested the hypothesis
that childhood episodes of illness affected adult
morphology in a Medieval Danish sample. By analysing
size-independent aspects of adult morphology like residual
height and principal component scores, Boldsen concluded
that while episodes of illness did change some scores, they
played no part in the formation of adult size. However,
this analysis was based on survivors (adults) only.
Comparison of survivors versus non-survivors is harder to
assess since it means comparing growth-related variables
in non-adults (non-survivors) and adults (survivors). This
seriously reduces the types of variables that can be
examined, but in theory, young adults may still have some
growth-related processes in a stage of near completion. A
better alternative might be to compare a growth-related
variable which, rather than being not complete in adults,
is complete in non-adults. For example, permanent molar
size would fall into this category since observable
differences in non-adults and adults may reflect health
related differences representative of the non-survivor —
survivor relationship that this comparison creates.

Ultimately, there are a variety of questions that
researchers have been reluctant to ask, or thought
unanswerable from skeletal growth data. With new
techniques becoming available for analyses,
palaeoauxological studies should begin to look toward a
more progressive framework in which to place their data.
In the last decade, palacopathological studies in general,
underwent a major shift in focus away from the individual
case study, and toward more population-based hypothesis
testing. If palacoauxological studies are going to come into
their own, then a similar shift away from the descriptive

case study is necessary. More importantly, however, this
venture is achievable. Palacoauxology has enormous
potential in terms of the kinds of questions that it can ask,
and the variety of anthropological problems that it can
contribute to. Further, there are substantial resources within
other disciplines which we can draw on to help with this
process. A few studies have already begun to reflect this
move toward a more progressive palacoauxology, but there
is still room for improvement.

CONCLUSIONS

With a few recent exceptions, studies in palacoauxology
have been primarily descriptive in their assessment of
growth-related changes. This is partly the product of a lack
of rigorous statistical approaches to the interpretation of
palaeoauxological data. The present paper reviews the
methods of quantitative analysis which have been
traditionally used in skeletal growth-related studies, and
presents some alternative techniques which may be useful
for osteological analyses of growth and development. In
this context, it is argued that for palacoauxological studies
to move forward, a more progressive trend toward
innovative quantitative approaches is necessary. Until such
techniques are adopted, palaeoauxological studies run the
risk of being nudged to the back-burner and regarded
simply as interesting case studies.
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