PALAEOANTHROPOLOGY AND EVOLUTIONARY BIOLOGY

ABSTRACT: Palaeoanthropology has frequently been out of step with the rest of evolutionary biology. It was, for instance, late to subscribe to the tenets of the “Evolutionary Synthesis” which emerged during the 1930s; and in more recent years it has shown considerable reluctance to confront the fact that the evolutionary process is a more complex and multidimensional one than the Synthesis allows for. The principal legacy of the Synthesis in palaeoanthropology is a linearity of thought in which evolution consists of little if any more than the gradual modification of lineages under the guiding hand of natural selection. Under this construct the unravelling of our evolutionary past is little more than a matter of pure discovery, as of links in a chain. Yet the fossil record demonstrates with increasing clarity that the history of hominids consists of much more than a single-minded progress from primitiveness to perfection. Instead, it consists of a bewildering array of forms which require accurate recognition, and whose relationships demand analysis. Only when we incorporate the systematic diversity into our evolutionary thinking will we be able to appreciate the true dynamics of the palaeoanthropological record.

KEY WORDS: Palaeoanthropology – Evolutionary theory – History – Evolutionary synthesis – Punctuated equilibrium

INTRODUCTION

Palaeoanthropology has always enjoyed (if that is the right word) a somewhat equivocal relationship with the rest of evolutionary biology. Born out of the study of human anatomy, a specialization with a history, outlook and concerns entirely distinct from those of the comparative anatomical and geological studies that gave rise to other areas of palaeontology, palaeoanthropology has tended to stand apart from the evolutionary biological mainstream. Over the long term this insularity has, with a single exception, proved to be particularly true in respect to developments in evolutionary theory. However, the exception has turned out to be an extraordinarily powerful one, which, despite the passage of a half-century, still reverberates in palaeoanthropology today.

The first three decades of the twentieth century, following the rediscovery of the principles of genetics in 1900, were a fairly chaotic period in the history of evolutionary biology. There were almost as many theories of the evolutionary process on offer as there were biologists, and few among them (biologists or theories) accorded natural selection any primacy (see review by Mayr 1982). It was thus remarkable enough that, in the space of rather few years during the century’s fourth decade, there occurred an extraordinary theoretical convergence on the evolutionary process among geneticists, systematists, palaeontologists and others. More remarkable still, though, was that this new unifying concept should identify natural selection not just as a necessary, but almost as a sufficient, condition for evolution.

Perhaps it was sheerly through exhaustion that the diversified and opinionated practitioners of what would become known as evolutionary biology finally agreed to pool their expertise into what became known as the “Evolutionary Synthesis.” Based on mathematical
frameworks largely developed by J. B. S. Haldane (e.g. 1924–26), Ronald Fisher (e.g. 1930) and Sewall Wright (e.g. 1931), the geneticist Theodosius Dobzhansky (1937, 1939) and the paleoanthropologist George Gaylord Simpson (e.g. 1944) led the way to an all-but-universal acceptance of the notion that virtually every evolutionary phenomenon ultimately be ascribed to gradual generation-by-generation shifts in population gene frequencies, under the benign hand of natural selection. It should be pointed out that each one of the founding triumvirate was acutely aware from data in his own field that the evolutionary process must actually be more complex than this linear formulation implies. All were, for example, concerned in different ways with the reductionist tendencies in nature, and with the need to account for their establishment. Nonetheless, as the Synthesis became more widely accepted, it also became “hardened” into a simpler and more unfurling formulation: evolution consists of gene-frequency change in lineages, period.

THE SYNTHESIS AND PALEOANTHROPOLOGY

True to their tradition as consumers rather than producers of evolutionary theory, paleoanthropologists had been little more than bystanders while all this was going on. Indeed, in general they continued right through the pre-war period to show remarkably little interest in the vast and implicit or explicit challenges that lay behind their analyses of the human fossil record. Yet, undoubtedly, as that record inexorably enlarged, a huge theoretical deficit was accumulating in paleoanthropology: a deficit that would eventually have to be filled. And, in the postwar years, what better to fill it than the Synthesis, which was sweeping all before it in other areas of evolutionary biology? Thus it was that, at around midcentury, the bastion of paleoanthropology fell to the Synthesis — and to the Synthesis, what’s more, in its “hardened” version, shorn of the subtleties that had faced its earlier manifestations (see discussion in Tattersall 1995).

But it was not simply the theoretical vacuum that had existed at paleoanthropology’s center that opened the floodgates to the Synthesis. The architects of the Synthesis — notably Dobzhansky and Mayr, ironically the pair with the least-first-hand knowledge of the human fossil record — actively took upon themselves the task of reinterpreting that record. And such was the majesty of their reputations that it became almost prima facie evidence of an antievolutionary stance to disagree with them. Dobzhansky was the first to share his insights on human evolution with his paleoanthropological colleagues. As early as 1948 he argued that the principle of “population thinking” (whereby it is recognized that individuals of the same species resemble each other because they belong to the same population, not the other way round) to the human fossil record, and concluded that the Java and Peking Man fossils were no more different from each other than representatives of different natural populations. For such a good; but Dobzhansky went further, to claim not just that “as far as known, no more than a single hominid species existed at any one time level” (1944: 261–262), but that some could only ever have been the result of one or perhaps two phylogenetic transformations in Hominidae), Dobzhansky declared, “were always taking place within a single genetic system, a system consisting of one more or less, but certainly not, reproductively isolated races.” (1944: 262). This refrain was eagerly taken up by others, particularly as “culture” and “ecology” were added to the mix. Culture, it was alleged (whether it was), had so broadened the human “ecological niche” that two kinds of humans could simply not coexist (e.g. Brace 1964).

It is thus evident that as early as the mid-1940s Dobzhansky had come to believe that all human evolutionary developments since Java Man had taken place within the confines of the single species Homo sapiens. Clearly he had been influenced in this by the recent arrival in New York of Franz Weidenreich, acclaimed today by his adherents as the father of multidisciplinary in paleoanthropological thought. And even though Weidenreich is on record as saying that, by this point in his career, he was just too old to change his ways of thinking (Bobb Schaeffer and Ernst Mayr, pers. comm.), it is clear that his view of human evolution as a single braided stream was congenial to the Synthesis. Ernst Mayr did not go quite as far as Dobzhansky in lumping fossil humans, but in 1950 he published an influential paper in which he argued that all known fossil hominids belonged in the same lineage, leading from Homo erectus to Homo sapiens (the Neandertals). This simple schema had the decided advantage of sweeping away a huge detritus of unnecessary names that had accumulated over time, with impeccable authority, it established a view of linearity in human evolution that was to grip the field of paleoanthropology for the next half-century. Between 1950 and 1954, Dobzhansky and Mayr had provided both an intellectual framework and a fossil interpretation that sustained the view of human evolution as a long, singleminded path from primiveness to perfection.

PUNCTUATED EQUILIBRIUM

Yet, even in the 1950s, neither the hominid fossil record, nor the records of other groups of vertebrates and invertebrates, truly sustained the notion that the evolution of life is a simple process of ever-increasing adaptation within lineages. Instead, in retrospect the message has always seemed to be one of diversity, of consistent evolutionary experimentation. The appropriate metaphor appears to be a branching bush, rather than a ladder to be climbed. And the “hard” version of the Synthesis — the form in which it had been absorbed by paleoanthropologists of different natures and diversities — in a long and significant way, is so remarkable that the fossil record is so galling in such intermediates. Even so august a figure as Charles Darwin himself had found it “impossible” longer or smaller to explain the absence of the expected intermediates in the rock record as it was known in the nineteenth century. Since then, many millions more fossils have been found, and many thousands more fossiliferous sequences have been investigated; but the essential observation remains unchanged. Thus, well over a century down the line from Darwin, the time was becoming ripe to ask whether in fact the famous gaps in the fossil record, far from being deficiencies to be apologized for, might not actually be telling us something biological, after all.

This impolitic question was raised in 1972 by the invertebrate paleoanthropologists Niles Eldredge and Stephen Jay Gould, who proposed that, far from being a stately, generation-by-generation process, evolutionary change actually tends to occur in short-term episodes, usually linked to speciation. For reasons of genetic homeostasis, they argued, most of the history of any species will be marked by non-change, or “stasis.” The fossil record would thus be expected to show “punctuated equilibria” rather than of “phyletic gradualism” and indeed, that is what we are increasingly finding. Species in the fossil record tend to have relatively sudden origins (in speciation), varying clines (in geographic isolation), and well-marked species deaths (by extinction), much as individuals do; and, also like individuals, species may or may not give rise to offspring (successful or otherwise) during their historical span. And even though some fine-tuning of the basic idea was needed — for example, it seems more plausible to me that significant novelties are incorporated into new species populations in situ, rather than by geographic diversification, rather than in conjunction with speciation itself (Tattersall 1994) — new analyses of both invertebrate and vertebrate fossil records have tended to bear the basic premise out.

Predictably, there was much initial opposition to Eldredge and Gould’s idea (“evolution by jerks” as one uncouth critic called it) among evolutionary biologists of all stripes. Punctuated equilibria was attacked as being antievolutionary (which clearly it is not), or at least as being contrary tb notions of natural selection (which it is not either; natural selection is clearly incorporated into its theoretical underpinnings). But because they lack the sort of uniformity that is standard fare in science, as in other areas of human experience, and to be expected. Equally predictable, though, was that, outside paleoanthropology, evolutionary biologists would not take long to recognize that punctuated equilibrium is complementary, rather than antagonistic, to the dictates of the Synthesis. Particularly, most evolutionary biologists have come quite readily to appreciate the special role that punctuated equilibria permits entire populations and species to play in the evolutionary process, and to accept that the Synthesis is not yet exhausted by such phenomena. Of course, if evolution indeed consists of no more modification of lineages under natural selection, then fossils are essentially links — intermediates — in a long and significant history, that is so remarkable that the fossil record is so galling in such intermediates. Even so august a figure as Charles Darwin himself had found it “impossible” longer or smaller to explain the absence of the expected intermediates in the rock record as it was known in the nineteenth century. Since then, many millions more fossils have been found, and many thousands more fossiliferous sequences have been investigated; but the essential observation remains unchanged. Thus, well over a century down the line from Darwin, the time was becoming ripe to ask whether in fact the famous gaps in the fossil record, far from being deficiencies to be apologized for, might not actually be telling us something biological, after all.

This impolitic question was raised in 1972 by the invertebrate paleoanthropologists Niles Eldredge and Stephen Jay Gould, who proposed that, far from being a stately, generation-by-generation process, evolutionary change actually tends to occur in short-term episodes, usually linked to speciation. For reasons of genetic homeostasis, they argued, most of the history of any species will be marked by non-change, or “stasis.” The fossil record would thus be expected to show “punctuated equilibria” rather than of “phyletic gradualism” and indeed, that is what we are increasingly finding. Species in the fossil record tend to have relatively sudden origins (in speciation), varying clines (in geographic isolation), and well-marked species deaths (by extinction), much as individuals do; and, also like individuals, species may or may not give rise to offspring (successful or otherwise) during their historical span. And even though some fine-tuning of the basic idea was needed — for example, it seems more plausible to me that significant novelties are incorporated into new species populations in situ, rather than by geographic diversification, rather than in conjunction with speciation itself (Tattersall 1994) — new analyses of both invertebrate and vertebrate fossil records have tended to bear the basic premise out.

Predictably, there was much initial opposition to Eldredge and Gould’s idea (“evolution by jerks” as one uncouth critic called it) among evolutionary biologists of all stripes. Punctuated equilibria was attacked as being antievolutionary (which clearly it is not), or at least as being contrary tb notions of natural selection (which it is not either; natural selection is clearly incorporated into its theoretical underpinnings). But because they lack the sort of uniformity that is standard fare in science, as in other areas of human experience, and to be expected. Equally predictable, though, was that, outside paleoanthropology, evolutionary biologists would not take long to recognize that punctuated equilibrium is complementary, rather than antagonistic, to the dictates of the Synthesis. Particularly, most evolutionary biologists have come quite readily to appreciate the special role that punctuated equilibria permits entire populations and species to play in the evolutionary process, and to accept that the Synthesis is not yet exhausted by such phenomena. Of course, if evolution indeed consists of no more modification of lineages under natural selection, then fossils are essentially links — intermediates — in a long and significant history, that is so remarkable that the fossil record is so galling in such intermediates. Even so august a figure as Charles Darwin himself had found it “impossible” longer or smaller to explain the absence of the expected intermediates in the rock record as it was known in the nineteenth century. Since then, many millions more fossils have been found, and many thousands more fossiliferous sequences have been investigated; but the essential observation remains unchanged. Thus, well over a century down the line from Darwin, the time was becoming ripe to ask whether in fact the famous gaps in the fossil record, far from being deficiencies to be apologized for, might not actually be telling us something biological, after all.
relationships among them. Yet, if we look objectively at the hominid fossil record, it is impossible to avoid the message of evolutionary experimentation that it carries. The morphological variety in that record is enormous, and it has only been possible to ignore it by the device of ignoring morphology itself. In turn, this sophistry has been made possible by fundamentalist adherence to the tenets of the Synthesis; for, if all hominid fossils are links in a single chain that courses through time, then their place in the sequence of evolutionary events is most directly revealed by their age. In this way, dates in palaeoanthropology have largely replaced morphology as the keys to the significance of individual hominid fossils. This, then, is the legacy of the Synthesis in human evolutionary studies. In its day, this new perspective on the evolutionary process produced the same salutary effect on palaeoanthropology as it did in the study of evolutionary theory. For in both cases, it effected a much-needed clearing-out of outmoded ideas and outright mythology. From the new vantage point thus created, it should have been possible to build a new structure in palaeoanthropology based on a keener appreciation of the subtleties of the evolutionary process and on a rapidly expanding human fossil record. Alas, once the post-war euphoria of the new evolutionary perspective had worn off, the insularity of palaeoanthropology reasserted itself, and the hardening Synthesis took on the form of dogma. Only when we finally extricate ourselves from the dead hand of this dogma will we have a chance of coming to grips with, and experiencing the true excitement of, the marvellously expanding human fossil record.

ACKNOWLEDGMENTS

I thank Dr. Václav Vanča for the opportunity to participate in the Hrdlička Congress, and especially in this Symposium.

REFERENCES


Ian Tattersall
Department of Anthropology
American Museum of Natural History
Central Park West at 79th Street
New York NY 10024, USA
Tel: +1 212 769 5877
Fax: +1 212 769 5334
e-mail: ian@amnh.org

168