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ABSTRACT: An index of sexual dimorphism for populations distributed as mixture models of two normal components
has been proposed by the authors. Our proposal is a function of the five parameters characterizing the mixture model,
that is, two mathematical expectations, two variances and one mixing proportion. That our index depends on a proportion
is not always perceived correctly, so in this article we show that sample sizes, or proportions as lineal functions of
sample sizes, influence on such common sample statistics as Student's t or Snedecor's F and the decisions that are made
through them.
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The authors of these comments have proposed an index
(MI) of sexual dimorphism in populations that are
distributed according to a probabilistic model denominated
mixture model of two normal components (see Ipiña,
Durand 2000). Our proposal is defined as a function of the
five parameters that characterize the normal mixture, and
it measures the overlap area between the two functions
that represent the contribution of each sex in the population.
Such parameters are two mathematical expectations, two
variances and the proportions that correspond to each one
of the sexes that make up the population. One proportion
is the complement of the other so, only one of them has to
be taken into account.

Since the population we are considering is a mixture of
two normal populations, a mixture that brings about a new
population, hence with probabilistic properties that are not
present in each one of the two normal populations, it seems
reasonable, even compelling, that the mixing proportion
is one of the parameters that characterize the mixture.

A consequence is that such a parameter, alone, is able
to discriminate two mixtures, i.e. two normal mixtures are
different when they have the same means and variances
but different mixing proportions. It is obvious, on the other
hand, that this implies the fact that both mathematical
expectations as well as variances behave in the same way,

so that, for example, two normal mixtures are different
when they have the same values for all parameters except
the mean of one of the sexes.

However, that a mixing proportion exhibits such a
peculiarity in discriminating mixtures, as mathematical
expectations and variances do, is not always perceived
correctly. Thus, when we analyze two normal mixtures that
only differ in their mixing proportions, it may be assumed
that any measure dealing with sexual dimorphism should
be the same in both mixtures. Of course this is the same as
saying that sexual dimorphism is related to means and
variances and not to mixing proportions.

A problem arises when sexual dimorphism is analyzed
from a probabilistic standpoint, i.e. when random variables,
distribution functions, sample functions or hypothesis tests
are involved. Such a problem is that proportions play an
important role in the definition of some common statistics
and the decisions that are made through them.

In effect, the estimation of a mixed proportion is a direct
consequence of the sex sample sizes. Let us analyze
accordingly whether or not sample sizes influence the
decisions that are made in problems where hypothesis tests
are concerned.

Let us suppose we have two random samples, selected
from normal populations, and we feel that one of these
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samples has been extracted from a population with a
mathematical expectation greater than the one of the other
population involved. Thus, we are interested in testing:
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Values of the sample mean, variance and size are 16, 4
and 2, respectively, in the first random sample, whereas
such values are 11, 9 and 3 in the second random sample.
Since the statistic we are dealing with is a quotient whose
distribution function is a Student's t with degrees of freedom
depending upon the fact that variance parameters are
considered equal or not, it is mandatory to first construct
and solve the test:
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As is well-known, this test is carried out by means of
the quotient of sample variances statistic, distributed
according to a Snedecor's F distribution with one and two
degrees of freedom. Critical values for such a test are
0.0125 and 38.51 so that, with significance level α = 0.05,
we accept the null hypothesis and conclude that our
problem is homocedastic.

Consequently, we have to use the statistic distributed
according to a Student's t distribution with three degrees
of freedom. The rejection region of the test concerning
mathematical expectations has, in this way, 2.353 as a lower
bound so that we accept the null hypothesis since the
sample value for the implied statistic is 2.0225. This means
we have two samples randomly selected from one normal
population.

Let us now suppose we have two random samples that
are the same as the previous ones but with different sample
sizes. Namely, the first sample has sample mean and
variance of 16 and 4, respectively, but size 16, and the
second sample has sample mean and variance of 11 and 9,
but size 6. Given that sample sizes have changed, it is
mandatory to perform the above test concerning variances
again, so that critical values for a test with α = 0.05 are
now 0.279 and 6.43 for a Snedecor's F distribution with
fifteen and five degrees of freedom. The decision is again
the acceptance of the null hypothesis so we are still
considering a homocedastic problem.

The statistic that is involved in the test concerning
mathematical expectations, is now distributed according
to a Student's t distribution with twenty degrees of freedom
and defines a critical value that is 1.72. Since the sample
value for such a statistic is 4.5584, our decision now is to
reject the null hypothesis and to conclude that the two
random samples analyzed were not selected from a unique
population.

As a result we can see that we have made two opposite
decisions in spite of the fact that the only difference
between the two above-mentioned experimental situations

is in the sample sizes. We would like to point out that the
two above examples are by no means exceptional or
elaborate. The reader is kindly asked to carry out the same
calculations as above, with a random sample whose mean
is 16, whose variance is 6.25 and whose size is 8, and
another random sample whose mean, variance and size
are 14, 9 and 6, respectively. Our reader will conclude that
the null hypothesis is accepted in the case where the test
to solve is the same as the above-mentioned test concerning
mathematical expectations. However, if the random samples
to analyze are the same as the former, but with sample sizes
18 and 8, respectively, the null hypothesis is rejected.

In fact, sample sizes influence on the Student's t or
Snedecor's F distribution functions in such a way that the
degrees of freedom of these distributions are a consequence
of these sample sizes, as is well-known. Furthermore, the
above decisions involving the statistic with a Student's t
distribution can be easily obtained by considering the
statistic with a Snedecor's F distribution.

In effect, let 15 and 5 be the variances of two random
samples extracted from normal populations. Suppose we
are interested in testing whether or not such samples come
from homocedastic populations and, initially, the sample
sizes are 8 and 13. With significance level α = 0.05, the
corresponding statistic with a Snedecor's F distribution of
seven and twelve degrees of freedom delimits an
acceptance region with minimum endpoint equal to 0.2141
and maximum endpoint equal to 3.61. As a consequence
we accept the null hypothesis, concluding that the two
random samples have been selected from a unique
population as far as the σ2 variance parameter is concerned.

If we now have two random samples with variances,
again 15 and 5, but sizes 11 and 21, respectively, the
decision to make is to reject the null hypothesis so that we
are now analyzing a heterocedastic problem. In effect, the
minimum and maximum endpoints of the acceptance
region are now 0.29239 and 2.77.

Thus, we see that sample sizes are directly implied in
decision-makings such as those mentioned above. It is clear
that, from a mathematical standpoint, sample sizes
influence the values obtained in statistics such as the one
with a Student's t distribution. In effect, when two random
samples selected from normal populations, are analyzed
and it is felt that a homocedastic problem is concerned,
the statistic definition, as a quotient of a standardized
normal random variable and the square root of a chi-square
random variable with n1 +n2 – 2 degrees of freedom divided
by such degrees of freedom (and provided that these
random variables are independent), is quite straightforward,
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with d0 some specified value in the null hypothesis, and
for a statistic distributed according to a Student's t model
with n1 +n2 – 2 degrees of freedom. This means we have a
sample function concerning two sample means, two sample
variances and two sample sizes which, in turn, implies that
the value of T will change as some of the sample means or
variances, or some of the sample sizes change.

To conclude, if there are some doubts about the
reliability of the MI index of sexual dimorphism because
it is a function involving the mixing proportions of the
normal mixture, then such doubts should be extended to
such common statistics as the ones with the Student's t or
the Snedecor's F distributions, and to the decisions that
these statistics generate. We do not think that such a state
of affairs is the most reasonable one.
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