ABSTRACT: Hypertrophic cardiomyopathy is indicated by left and/or right ventricular hypertrophy, which is typically asymmetric and involves the interventricular septum. Ordinarily, the volume of the left ventricle is normal or reduced, while systolic gradients are common. As a complex cardiac disease, familial hypertrophic cardiomyopathy (FHC) has unique pathophysiological characteristics and multifarious morphological, functional, and clinical features.

Twelve genes have been identified in the aetiology of the pure form of FHC. All of these genes encode proteins of the cardiac sarcomere. Recently, mutations in the PRKAG2 gene, coding for the γ2-subunit of the AMP-activated protein-kinase, were found to be responsible for familial Wolff-Parkinson-White-syndrome (WPW) with cardiac hypertrophy or for WPW with conduction defect and absence of cardiac hypertrophy. Around 150 mutations have been identified. Most are found in genes MYH7, MYBPC3 and TNNT2 (Keller et al. 2002). Mutations leading to FHC are missense or frameshift mutations (Perry 1998). The molecular mechanisms are not yet determined. Missense mutations result in stable mutant proteins that act by a dominant negative effect on the structure or function of the sarcomere (poison peptide hypothesis). Frameshift mutations, however, result in unstable truncated proteins. They act as “null-allele” which incites haploinsufficiency of the “wild-type” protein (haploinsufficiency hypothesis).

There are several stages leading to the determination of the FHC phenotype. Initially, factors which vary the penetrance, such as age and gender, impact the phenotype. Next, the phenotype relies upon the responsible mutation. The penetrance and clinical presentation of mutations in TNNT2 differ greatly. Whereas some mutations result in stable mutant proteins that act by a dominant negative effect on the structure or function of the sarcomere (poison peptide hypothesis). Frameshift mutations, however, result in unstable truncated proteins. They act as “null-allele” which incites haploinsufficiency of the “wild-type” protein (haploinsufficiency hypothesis).

TNNT2 gene
Troponin T binds both TnI and TnC in the Tn complex, as well as TM and possibly actin, on the thin filament. The elongated shape of the Tn
complex and its position encompassing both the C-terminal third or more of TM is due to TnT. The elongated N-terminal end of TnT is oriented toward the C-terminus of TM along with the head-to-tail overlap region. The C-terminal half of TnT binds to TnI, to TnC and the middle of TM in a Ca2+-sensitive manner.

The TNNT2 gene induces a number of cTnT isoforms by alternative splicing. The composition varies from foetal to adult. Furthermore, it may be altered in heart failure (Perry 1998). The principal isoform in the normal adult heart consists of 288 amino acids. The residue numbers of human cTnT are provided below with respect to this isoform. TnT is composed of an extended amino-terminal portion (T1; residues 1-187 in the human cardiac protein) which is found next to TM alongside the thin filament and a globular carboxy-terminal domain (T2; residues 188–288) which binds to Tm near Cys 190, as well as the amino-terminal portion of Tn and an unidentified domain on TnC. It appears as though TnT is relevant to the distribution of the inhibitory effect of the Tn complex, via Tm, to the seven actin monomers with which it interacts, in the absence of Ca2+, and in the removal of this inhibitory effect from all seven actin monomers, as well as activating the actomyosin ATPase, in the presence of Ca2+. In general, mutations in TNNT2 gene are associated with mild left ventricular hypertrophy, but a relatively poor prognosis. Despite the significance of the causal mutations, none of the clinical, electrocardiographic or echocardiographic manifestations of HCM are specific to a certain mutation or gene. It is also clear that the causal mutations do not fully explain the degree of variability in the phenotype of HCM; there is a significant variability in the phenotype of HCM among individuals with the same mutation. This finding indicates that other genetic factors (modifier genes) and environmental factors play important roles in modifying HCM phenotypes.

MATERIALS AND METHODS

Study patients

181 Czech probands with HCM/FHC were enrolled in this study. The study group consisted of 24 families with FHC and probands without FHC history but with HCM diagnosis. The clinical diagnosis was based on echocardiography.

Genetic studies

DNA was isolated from peripheral blood lymphocytes by use of phenol-chloroform extraction. Exon 9 and 11 of TNNT2 gene, which are known to contain mutations associated with FHC, were analyzed by the polymerase chain reaction (PCR) and subsequently by DNA sequencing analyses, which were cross-sequenced. Oligonucleotide primers were used to amplify exons 9 and 11, they were synthesized based on the determined DNA sequences of the normal human TNNT2 gene as it appears in published sequences.

RESULTS

The ΔGlu160 mutation was observed in patients with severe forms of hypertrophic cardiomyopathy, left ventricle obstruction (gradient 70 mm Hg) and 70% of hypertrophy extent (Čapek 2003). Typically, troponin T mutations cause hypertrophic cardiomyopathy with sub-clinical findings (Sweeney et al. 1998). Thus, this unusual result is significant in that it was clinically detected.

CONCLUSION

Another important finding of this study is that the frequency of mutations in the TNNT2 gene of the Czech patients with FHC diagnosis does not correspond to the frequency of mutations in this gene in other European countries and the United States of America which have been empirically determined at a frequency of 15–20% (Burhop et al. 2001).

ACKNOWLEDGEMENTS

This study was supported by MSMT ČR (Ministry of Education, Youth and Sports of the Czech Republic) grant No. LN00B107.

REFERENCES


ČAPEK P., 2003: Mutacia analýza exonu 9 a 11 genu TNNT2 u českých pacientů s diagnózou familiární hypertrofické kardiomyopatie. (Mutation analysis of exon 9 and 11 of the TNNT2 gene in Czech patients with familial hypertrophic cardiomyopathy diagnosis). M. A. Thesis, Department of Anthropology and Human Genetics, Laboratory of Molecular Anthropology and Forensic Genetics, Faculty of Science, Charles University, Prague. 72 pp.


Pavel Čapek
Jiří Škvor
Department of Anthropology
and Human Genetics
Laboratory of Molecular Anthropology
and Forensic Genetics
Faculty of Science
Charles University in Prague
Viničná 7
128 44 Prague 2, Czech Republic
E-mail: pcapek@email.cz
E-mail: skvor@natur.cuni.cz
E-mail: mazurova@natur.cuni.cz

Pavel Čapek
Jiří Škvor
Fotini Mazurová
EuroMISE Center – Cardio
Pod vodárenskou věží 2
182 07 Prague 8, Czech Republic