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ABSTRACT: Assuming we are sampling from independent normal populations, the quotient of sample means is probably 
the most popular measure of sexual dimorphism found in the anthropological literature. However, it is used as a descriptive 
(vs. inferential) sample function in spite of its evident relationship with the difference of two sample means. Here we 
discuss some aspects of the use of this quotient, like its reliance on the independence assumption between sexes, and 
show a simple procedure that involves applying to the quotient of sample means the inferences that can be drawn from 
the difference of sample means.

KEY WORDS: Sexual dimorphism measure – Sample means quotient – Independence – Student's t distribution

the anthropoloGiCal BaCKGroUnd

Smith (1999), in his work on measures of sexual 
dimorphism, alludes to the fact that, in animal species, there 
are differences between males and females in relation to the 
mean of the body size. Furthermore, Smith points out that 
Darwin was interested in exploring some selective processes 
related to sex dimorphism and such dimorphism has since 
motivated much research within evolutionary theory.

Sexual dimorphism, by its very own nature, is a 
component to be taken into consideration on analyzing 
the morphological variability of a population composed 
of two sexes. In what fossil samples are concerned, 
two types of variability can be observed. on one hand, 
between species variability and, on the other, within 
species variability, sexual dimorphism constituting one 
of the latter's components. a particularly interesting issue 
in paleoanthropology involves differentiating these two 
types of variability. plavcan (2002), following the work of 
Lockwood (1999), has explored some sexual dimorphism 
patterns across species.

alexander et al. (1979) and Clutton-Brock (1985), 
among others, hypothesize that sexual dimorphism in 

higher primates is correlated to their behavior and social 
organization. In this regard, Fleagle et al. (1980) and Kay 
(1982) have suggested that the behavior of extinct species 
can be deduced by studying the existent sexual dimorphism 
in fossil data.

assessment of sex ratios in human fossil remains 
provides information, according to Speth (1983) and Davis 
(1987), on population biology. Evolutionary trends and 
population dynamics can be disclosed by assessment of 
sex ratios (Dong 1997), and Klein, Cruz-uribe (1983) have 
suggested that body size estimates can be affected by the 
sex ratio calculated from the sample studied. Lee (2001) 
believes that sexual dimorphism, within higher vertebrates, 
is correlated to sex ratio. this type of dimorphism is, 
according to the latter author, the main component in the 
variability of a population.

In summary, sexual dimorphism appears to be, from 
a biological perspective, conceptually clear and, as 
a component of population variability, of particular 
significance. However, there is no consensus as to which 
method should be used to measure this dimorphism. 
Indeed, numerous indices or measures have been proposed 
for evaluating sexual dimorphism but the biological 
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community does not consider them to be reliable in equal 
measure. Here we focus on the index, named quotient 
of sample means that is more frequently used in sexual 
dimorphism studies, at least in the anthropological field. a 
more general discussion on indices of sexual dimorphism 
can be found elsewhere (Ipiña, Durand 2010).

the loG-tranSformed QUotient

the quotient of sample means (Q) which is defined as, 

1

2

XQ
X

= ,

where , 1, 2iX i=  (male, female), are the sample means 
corresponding to the two sexes subject to analysis, is 
probably the most popular measure of sexual dimorphism 
used by anthropologists. the work of Lovich and gibbons 
(1992) is an example where the interested reader can see 
other forms of this quotient, with ( )log Q  being the most 
prevalent.

this latter log-transformed form deserves, in our opinion, 
some comment. on the one hand, the transformation seems 
to solve some problems related to the bias and kurtosis of 
the empirical (vs. analytical) distribution of the quotient 
(see, e.g., ranta et al. 1994). on the other hand, it should 
to be kept in mind that, by applying this transformation, the 
distributional properties of the random variables involved 
change. thus, let us assume that we are sampling from 
independent normal populations so that the quotient Q is 
constructed with two independent normally distributed 
sample means. By considering these constraints, the 
interested reader can see in Ipiña (2002) the analytical 
expression of the Q density (see an example in Figure 1). 
now, let us assume that ( )log Q  is normally distributed. 
this entails that Q is lognormally distributed and, as can 

be seen in Figure 1, the lognormal density and the density 
derived by Ipiña are different.

accordingly, if we are sampling from independent 
normal populations, then Q is not lognormally distributed 
which is the same as saying that ( )log Q  is not normally 
distributed. If, on the contrary, we suppose that ( )log Q  
is normally distributed then either we are not sampling 
from normal populations or these populations are not 
independent. With c∼  standing for "not distributed as" and 

c⊥  standing for "not independent from", we have,

( ) ( ){ }
( )

1 2 1 2, normals
lognormal log normalc c

X X X X
Q Q

∩ ⊥ ⇒

⇒ ⇒

∼

∼ ∼
,

hence,

( )

( ) ( ){ }1 2 1 2

log normal lognormal

, normals
c

Q Q

X X X X

⇒ ⇒

⇒ ∩ ⊥

∼ ∼

∼
,

that is to say,

( ) ( ){ }1 2 1 2, normalsc cX X X X∪ ⊥∼ .

In short, it does not seem tenable to assume that ( )log Q  
is normally distributed and, at the same time, to suppose that 
we are dealing with independent and normally distributed 
populations.

are the SexeS independent 
popUlationS?

When analyzing sexual dimorphism, it is customary, in 
the (paleo-) anthropological field, to assume independent 
normal populations. We have discussed elsewhere (Ipiña, 
Durand 2010), the consequences of assuming independent 
populations, as the following example shows.

FIgurE 1.  an example of the comparison 
between the densities of the quotient of 
two sample means which are independent 
normal populations (Ipiña, 2002) and of 
the lognormal distribution.
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example 1. – In probability theory, it is well-known that 
two events S1 and S2 are independent if,

( ) ( ) ( ) ( )1 2 1 2 1 2| and |P S S P S P S S P S= = ,

or, which is the same,

( ) ( ) ( )1 2 1 2P S S P S P S∩ = .

as an immediate consequence, it is also known that two 
distribution functions Fx and Fy are independent if,

( ) ( ) ( ), x yF x y F x F y= ,

F being the joint bivariate distribution function of the 
random variables X and Y.

Let us assume that the two random variables "female 
heights of a human population" ( )X  and "male heights 
of the same population" ( )Y  are analyzed. If these sets of 
women and men are considered to be independent, one can 
easily compute the probability of simultaneously observing 
the events females whose height is strictly less than 1.51 m. 
and males whose height is strictly less than 1.51 m.,

( ) ( )
( ) ( ) ( )

1.51 1.51
1.51,1.51 1.51 1.51x y

P X Y
F F F
 < ∩ < = 

= = .

this is the same as stating that,

( ) ( )|1.51 1.51|1.51y y xF F= ,

|y xF  being the conditional distribution function of male 
heights in respect to female heights.

this means that the above mentioned male heights are, 
according to the hypothesis of independence between 
sexes, independent of the fact that women such as, e.g., 
their mothers or grandmothers are, or have been, strictly 
less than 1.51 m. tall.

on the other hand, let S be the event "to belong to the 
M sex" so, its complement Sc will then be "to belong to 
the F sex" (assuming there are two sexes, named M and F, 
in the population). are two complementary events, others 
than the sure and impossible events, independent? that is 
to say, is it true that,

( ) ( ) ( ) ( )0c cP S S P P S P S∩ = ∅ = = ?

as is well known, on the contrary, if, e.g., ( ) 0.48P S = , 
then,

( ) ( ) ( )0.52 0c cP S P S P S= ⇒ ≠ .

iS a ValUe of the QUotient of Sample 
meanS SiGnifiCantly different from 1?

a problem with Q is that, assuming independent normal 
populations, its density function is not an explicit one 
(Ipiña 2002) so, trying to make inferences with this random 
variable becomes a hard task. this is probably the reason 
why, to the authors's knowledge, the frequently used 
p-value that accompanies a value of any sample function 

with inferential support, is not presented alongside a sample 
means quotient value.

our aim is to propose a procedure that remedies this state 
of affairs. It consists in that, assuming that independent 
normal populations are involved, inferences drawn from 
the difference of sample means will equally apply to the 
quotient of sample means. When trying to make inferences, 
we are interested in testing whether a specific value of the 
quotient is significantly different from 1, or not. In terms 
of sexual dimorphism this is the same as analyzing whether 
or not such dimorphism exists.

assuming that the quotient of two mathematical 
expectations is the parametric counterpart of the quotient 
of two sample means, it is plain that,

1
1 2

2
1 0µ
µ µ

µ
= ⇔ − = .

thus, by performing a simple t-test to show, with a given 
confidence, that two sample means differ significantly, we 
have a way for the user to test whether or not a value of 
the quotient of two sample means differs significantly from 
the unity (examples of the application of t-tests to sexual 
dimorphism studies can be seen in greene 1989). as widely 
known, this is done by defining a sample function that has 
two algebraic forms, depending on whether the sample 
variances are significantly different, or not. If sample 
variances do not differ significantly, the sample function 
is, with 1 2W X X= − ,

( )
( ) ( ) ( 1 2

1 2
22 2

1 1 2 2

1 2 1 2

1 1 1 1
2

n n
W

T t
n S n S

n n n n

µ µ
+ −

− −
=

 − + −  +  + −  

∼ ,

where the null hypothesis 0 1 2: 0H µ µ− =  must be 
included, given our aim. In the case that sample variances 
differ significantly, as also widely known, the sample 
function is defined and approximately distributed as,

(
0

2 2
1 2

1 2

W HT t
S S
n n

ω
−′=

+

∼ ,

22 2
1 2

1 2
2 22 2

1 2

1 2

1 21 1

s s
n n

s s
n n

n n

ω

  +   
=
              

+
− −

,

example 2. – Suppose we have two independent random 
samples with,

1 276.7, 67.6,x x= =
2 2
1 22.54, 3.05,s s= =

1 26, 4,n n= =
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so q = 1.1346 and w = 9.1. With this w difference we have 
t = 8.52139 which p-value is 0.0000552 considering equal 
variances (F test p-value = 0.7989). as a consequence, the 
value q = 1.1346 of the quotient of sample means differs 
significantly from 1.

now, let us suppose that,

1 276.7, 67.6,x x= =
2 2
1 20.1857, 35.8247,s s= =

1 26, 4,n n= =

so, as before, q = 1.1346 and w = 9.1. thus, we have 
t' = 3.00854 which p-value is 0.05676 considering that 
sample variances now differ significantly (F test p-value = 
0.00003). Hence, in this new case, the value q = 1.1346 of 
the quotient of sample means does not differ significantly 
from 1 at a significance level 0.05 or less.
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